Search results for "factorization [transverse momentum]"

showing 10 items of 30 documents

Sampling methods for low-frequency electromagnetic imaging

2007

For the detection of hidden objects by low-frequency electromagnetic imaging the linear sampling method works remarkably well despite the fact that the rigorous mathematical justification is still incomplete. In this work, we give an explanation for this good performance by showing that in the low-frequency limit the measurement operator fulfils the assumptions for the fully justified variant of the linear sampling method, the so-called factorization method. We also show how the method has to be modified in the physically relevant case of electromagnetic imaging with divergence-free currents. We present numerical results to illustrate our findings, and to show that similar performance can b…

Applied MathematicsMathematical analysis510 MathematikLow frequencyComputer Science ApplicationsTheoretical Computer ScienceOperator (computer programming)510 MathematicsSignal ProcessingFactorization methodLimit (mathematics)AlgorithmMathematical PhysicsMathematics
researchProduct

Recent progress in electrical impedance tomography

2003

We consider the inverse problem of finding cavities within some body from electrostatic measurements on the boundary. By a cavity we understand any object with a different electrical conductivity from the background material of the body. We survey two algorithms for solving this inverse problem, namely the factorization method and a MUSIC-type algorithm. In particular, we present a number of numerical results to highlight the potential and the limitations of these two methods.

Applied MathematicsMathematical analysisBoundary (topology)Inverse problemObject (computer science)Computer Science ApplicationsTheoretical Computer ScienceElectrical resistivity and conductivitySignal ProcessingCalculusFactorization methodElectrical impedance tomographyMathematical PhysicsMathematicsInverse Problems
researchProduct

A NEW COMPLEXITY FUNCTION FOR WORDS BASED ON PERIODICITY

2013

Motivated by the extension of the critical factorization theorem to infinite words, we study the (local) periodicity function, i.e. the function that, for any position in a word, gives the size of the shortest square centered in that position. We prove that this function characterizes any binary word up to exchange of letters. We then introduce a new complexity function for words (the periodicity complexity) that, for any position in the word, gives the average value of the periodicity function up to that position. The new complexity function is independent from the other commonly used complexity measures as, for instance, the factor complexity. Indeed, whereas any infinite word with bound…

Average-case complexityDiscrete mathematicsFibonacci numberSettore INF/01 - InformaticaGeneral Mathematicscomplexity functionComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Function (mathematics)periodicitycritical factorization theoremCombinatoricsComplexity indexCombinatorics on wordsBounded functionComplexity functionComputer Science::Formal Languages and Automata TheoryWord (computer architecture)Combinatorics on wordMathematicsInternational Journal of Algebra and Computation
researchProduct

Discrete and Conservative Factorizations in Fib(B)

2021

AbstractWe focus on the transfer of some known orthogonal factorization systems from$$\mathsf {Cat}$$Catto the 2-category$${\mathsf {Fib}}(B)$$Fib(B)of fibrations over a fixed base categoryB: the internal version of thecomprehensive factorization, and the factorization systems given by (sequence of coidentifiers, discrete morphism) and (sequence of coinverters, conservative morphism) respectively. For the class of fibrewise opfibrations in$${\mathsf {Fib}}(B)$$Fib(B), the construction of the latter two simplify to a single coidentifier (respectively coinverter) followed by an internal discrete opfibration (resp. fibrewise opfibration in groupoids). We show how these results follow from thei…

Coidentifier; Coinverter; Factorization system; Internal fibrationPhysicsSequenceAlgebra and Number TheoryOrthogonal factorizationGeneral Computer ScienceInternal versionFactorization systemTheoretical Computer ScienceCombinatoricsSettore MAT/02 - AlgebraCoinverterTransfer (group theory)MorphismFactorizationInternal fibrationCoidentifierFixed baseApplied Categorical Structures
researchProduct

Characteristic Sturmian words are extremal for the Critical Factorization Theorem

2012

We prove that characteristic Sturmian words are extremal for the Critical Factorization Theorem (CFT) in the following sense. If p x ( n ) denotes the local period of an infinite word x at point n , we prove that x is a characteristic Sturmian word if and only if p x ( n ) is smaller than or equal to n + 1 for all n ≥ 1 and it is equal to n + 1 for infinitely many integers n . This result is extremal with respect to the \{CFT\} since a consequence of the \{CFT\} is that, for any infinite recurrent word x, either the function p x is bounded, and in such a case x is periodic, or p x ( n ) ≥ n + 1 for infinitely many integers n . As a byproduct of the techniques used in the paper we extend a r…

Critical Factorization TheoremDiscrete mathematicsPeriodicitySettore INF/01 - InformaticaCombinatorics on wordsGeneral Computer ScienceSturmian wordSturmian wordsFunction (mathematics)Critical point (mathematics)Theoretical Computer ScienceCombinatoricsCombinatorics on wordssymbols.namesakeBounded functionWeierstrass factorization theoremsymbolsFibonacci wordWord (group theory)MathematicsComputer Science(all)Theoretical Computer Science
researchProduct

Factorization of absolutely continuous polynomials

2013

In this paper we study the ideal of dominated (p,s)-continuous polynomials, that extend the nowadays well known ideal of p-dominated polynomials to the more general setting of the interpolated ideals of polynomials. We give the polynomial version of Pietsch s factorization Theorem for this new ideal. Our factorization theorem requires new techniques inspired in the theory of Banach lattices.

Discrete mathematicsMathematics::Commutative AlgebraPietsch's domination theoremApplied MathematicsDiscrete orthogonal polynomialsClassical orthogonal polynomialsMacdonald polynomialsDifference polynomialsAbsolutely continuous polynomialsFactorization of polynomialsHahn polynomialsWilson polynomialsOrthogonal polynomialsMATEMATICA APLICADAAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Domination spaces and factorization of linear and multilinear summing operators

2015

[EN] It is well known that not every summability property for multilinear operators leads to a factorization theorem. In this paper we undertake a detailed study of factorization schemes for summing linear and nonlinear operators. Our aim is to integrate under the same theory a wide family of classes of mappings for which a Pietsch type factorization theorem holds. Our construction includes the cases of absolutely p-summing linear operators, (p, sigma)-absolutely continuous linear operators, factorable strongly p-summing multilinear operators, (p(1), ... , p(n))-dominated multilinear operators and dominated (p(1), ... , p(n); sigma)-continuous multilinear operators.

Discrete mathematicsMultilinear mapPietsch's domination theoremMultilinear summing operators010102 general mathematicsMathematics::Classical Analysis and ODEs010103 numerical & computational mathematicsPietsch's domination theorem factorization of operators multilinear summing operators.Factorization of operators01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional AnalysisMathematics (miscellaneous)FactorizationFOS: Mathematics0101 mathematicsMATEMATICA APLICADAMathematics
researchProduct

Pietsch's factorization theorem for dominated polynomials

2007

Abstract We prove that, like in the linear case, there is a canonical prototype of a p -dominated homogeneous polynomial through which every p -dominated polynomial between Banach spaces factors.

Discrete mathematicsPolynomialBanach spaceTensor product of Hilbert spacesDominated polynomialsAbsolutely summing linear operatorsSymmetric tensor productsymbols.namesakeSymmetric polynomialFactorization of polynomialsHomogeneous polynomialWeierstrass factorization theoremsymbolsElementary symmetric polynomialAnalysisMathematicsJournal of Functional Analysis
researchProduct

Multialternating graded polynomials and growth of polynomial identities

2012

Let G be a finite group and A a finite dimensional G-graded algebra over a field of characteristic zero. When A is simple as a G-graded algebra, by mean of Regev central polynomials we construct multialternating graded polynomials of arbitrarily large degree non vanishing on A. As a consequence we compute the exponential rate of growth of the sequence of graded codimensions of an arbitrary G-graded algebra satisfying an ordinary polynomial identity. In particular we show it is an integer. The result was proviously known in case G is abelian.

Discrete mathematicsPure mathematicsHilbert series and Hilbert polynomialMathematics::Commutative AlgebraApplied MathematicsGeneral MathematicsMathematics::Rings and AlgebrasGraded ringMathematics - Rings and AlgebrasGraded Lie algebramultialternating polynomialFiltered algebrasymbols.namesakeReciprocal polynomialRings and Algebras (math.RA)Differential graded algebraFactorization of polynomialssymbolsFOS: MathematicsElementary symmetric polynomial16R50 16P90 16R10 16W50Mathematics
researchProduct

A Periodicity Theorem on Words and Applications

1995

We prove a periodicity theorem on words that has strong analogies with the Critical Factorization theorem and we show three applications of it.

Discrete mathematicssymbols.namesakeWeierstrass factorization theoremsymbolsBinary alphabetMathematics
researchProduct